Procedure

  1. Set Up CUDA and CUDA-X Libraries
    • Ensure you have a compatible NVIDIA GPU installed.
    • Install the CUDA Toolkit and the necessary CUDA-X libraries: cuBLAS, cuDNN, and cuTensor.
    • Follow the installation instructions provided by NVIDIA.
    • Verify the installation:
      nvcc --version cat /usr/local/cuda/version.txt
  2. Test cuBLAS for Matrix Multiplication
    • Use cuBLAS to perform matrix multiplication:
    • #include <iostream>
      #include <cublas_v2.h>
      
      int main() {
          cublasHandle_t handle;
          cublasCreate(&handle);
      
          int N = 1024;
          float *d_A, *d_B, *d_C;
          cudaMalloc(&d_A, N * N * sizeof(float));
          cudaMalloc(&d_B, N * N * sizeof(float));
          cudaMalloc(&d_C, N * N * sizeof(float));
      
          float alpha = 1.0f;
          float beta = 0.0f;
          cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, N, N, N, &alpha, d_A, N, d_B, N, &beta, d_C, N);
      
          cublasDestroy(handle);
          cudaFree(d_A);
          cudaFree(d_B);
          cudaFree(d_C);
      
          return 0;
      }
    • Compile and run the program:
      nvcc -o matrix_multiplication matrix_multiplication.cu -lcublas ./matrix_multiplication
  3. Test cuDNN for Deep Learning Operations
    • Use cuDNN for a convolution operation:
    • #include <cudnn.h>
      #include <iostream>
      
      int main() {
          cudnnHandle_t handle;
          cudnnCreate(&handle);
      
          cudnnConvolutionDescriptor_t conv_desc;
          cudnnCreateConvolutionDescriptor(&conv_desc);
      
          // Perform convolution (details omitted)
      
          cudnnDestroy(handle);
          return 0;
      }
  4. Test cuTensor for Tensor Operations
    • Use cuTensor to perform tensor operations:
    • #include <cutensor.h>
      
      int main() {
          cutensorHandle_t handle;
          cutensorCreate(&handle);
      
          // Perform tensor operations (details omitted)
      
          cutensorDestroy(handle);
          return 0;
      }
  5. Benchmarking Performance
    • Use nvprof or Nsight Systems to profile cuBLAS, cuDNN, and cuTensor operations.
    • Measure performance and compare GPU vs CPU speed.
    • Record results and analyze performance across libraries.
  6. Analyze Results
    • Evaluate GPU utilization, execution time, and memory consumption.
    • Identify bottlenecks and opportunities for optimization.
    • Choose the most efficient library for your workload.