Procedure
- Set Up CUDA and CUDA-X Libraries
- Ensure you have a compatible NVIDIA GPU installed.
- Install the CUDA Toolkit and the necessary CUDA-X libraries: cuBLAS, cuDNN, and cuTensor.
- Follow the installation instructions provided by NVIDIA.
- Verify the installation:
nvcc --version cat /usr/local/cuda/version.txt
- Test cuBLAS for Matrix Multiplication
- Use cuBLAS to perform matrix multiplication:
#include <iostream> #include <cublas_v2.h> int main() { cublasHandle_t handle; cublasCreate(&handle); int N = 1024; float *d_A, *d_B, *d_C; cudaMalloc(&d_A, N * N * sizeof(float)); cudaMalloc(&d_B, N * N * sizeof(float)); cudaMalloc(&d_C, N * N * sizeof(float)); float alpha = 1.0f; float beta = 0.0f; cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, N, N, N, &alpha, d_A, N, d_B, N, &beta, d_C, N); cublasDestroy(handle); cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); return 0; } - Compile and run the program:
nvcc -o matrix_multiplication matrix_multiplication.cu -lcublas ./matrix_multiplication - Test cuDNN for Deep Learning Operations
- Use cuDNN for a convolution operation:
#include <cudnn.h> #include <iostream> int main() { cudnnHandle_t handle; cudnnCreate(&handle); cudnnConvolutionDescriptor_t conv_desc; cudnnCreateConvolutionDescriptor(&conv_desc); // Perform convolution (details omitted) cudnnDestroy(handle); return 0; } - Test cuTensor for Tensor Operations
- Use cuTensor to perform tensor operations:
#include <cutensor.h> int main() { cutensorHandle_t handle; cutensorCreate(&handle); // Perform tensor operations (details omitted) cutensorDestroy(handle); return 0; } - Benchmarking Performance
- Use
nvprofor Nsight Systems to profile cuBLAS, cuDNN, and cuTensor operations. - Measure performance and compare GPU vs CPU speed.
- Record results and analyze performance across libraries.
- Use
- Analyze Results
- Evaluate GPU utilization, execution time, and memory consumption.
- Identify bottlenecks and opportunities for optimization.
- Choose the most efficient library for your workload.