Procedure

  1. Setup Environment
    • Ensure you have a compatible NVIDIA GPU and that CUDA, cuDNN, and TensorFlow/PyTorch are properly installed.
    • Ensure your system supports mixed precision training (e.g., Tensor Cores in NVIDIA Volta, Turing, or Ampere GPUs).
  2. Enable Mixed Precision Training
    • In TensorFlow (with Keras):
    • Install TensorFlow:
      pip install tensorflow
    • Set up mixed precision policy:
      import tensorflow as tf
      from tensorflow.keras import layers
      
      policy = tf.keras.mixed_precision.Policy('mixed_float16')
      tf.keras.mixed_precision.set_global_policy(policy)
    • Build and compile your model as usual. TensorFlow will automatically use 16-bit precision where applicable.
    • In PyTorch:
    • Install PyTorch:
      pip install torch
    • Use torch.cuda.amp for automatic mixed precision:
      import torch
      from torch.cuda.amp import autocast, GradScaler
      
      model = MyModel().to(device)
      optimizer = torch.optim.Adam(model.parameters())
      scaler = GradScaler()
      
      for data, target in train_loader:
          optimizer.zero_grad()
      
          with autocast():
              output = model(data)
              loss = loss_fn(output, target)
      
          scaler.scale(loss).backward()
          scaler.step(optimizer)
          scaler.update()
  3. Implement Quantization Aware Training (QAT)
    • In TensorFlow:
    • Install TensorFlow Model Optimization Toolkit:
      pip install tensorflow-model-optimization
    • Apply QAT:
      import tensorflow_model_optimization as tfmot
      
      model = tf.keras.applications.MobileNetV2(weights='imagenet')
      quantize_model = tfmot.quantization.keras.quantize_model
      model = quantize_model(model)
      
      model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
      model.fit(train_data, train_labels, epochs=10)
    • In PyTorch:
    • Apply QAT using PyTorch:
      import torch
      from torch.quantization import quantize_qat, get_default_qat_qconfig
      
      model = MyModel()
      model.train()
      model.qconfig = get_default_qat_qconfig('fbgemm')
      torch.quantization.prepare_qat(model, inplace=True)
      
      # Train the model
      for epoch in range(num_epochs):
          # Perform training
          pass
      
      model = torch.quantization.convert(model)
  4. Benchmark and Evaluate
    • Compare training speed, memory usage, and model accuracy for mixed precision and QAT models vs full precision models.
    • Use benchmarking tools like NVIDIA’s Nsight or PyTorch’s built-in performance utilities to evaluate improvements.
    • Document findings and analyze trade-offs in model efficiency vs accuracy.