Procedure
- Setup Environment
- Ensure you have a compatible NVIDIA GPU and that CUDA, cuDNN, and TensorFlow/PyTorch are properly installed.
- Ensure your system supports mixed precision training (e.g., Tensor Cores in NVIDIA Volta, Turing, or Ampere GPUs).
- Enable Mixed Precision Training
- In TensorFlow (with Keras):
- Install TensorFlow:
pip install tensorflow - Set up mixed precision policy:
import tensorflow as tf from tensorflow.keras import layers policy = tf.keras.mixed_precision.Policy('mixed_float16') tf.keras.mixed_precision.set_global_policy(policy) - Build and compile your model as usual. TensorFlow will automatically use 16-bit precision where applicable.
- In PyTorch:
- Install PyTorch:
pip install torch - Use
torch.cuda.ampfor automatic mixed precision:import torch from torch.cuda.amp import autocast, GradScaler model = MyModel().to(device) optimizer = torch.optim.Adam(model.parameters()) scaler = GradScaler() for data, target in train_loader: optimizer.zero_grad() with autocast(): output = model(data) loss = loss_fn(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update()
- Implement Quantization Aware Training (QAT)
- In TensorFlow:
- Install TensorFlow Model Optimization Toolkit:
pip install tensorflow-model-optimization - Apply QAT:
import tensorflow_model_optimization as tfmot model = tf.keras.applications.MobileNetV2(weights='imagenet') quantize_model = tfmot.quantization.keras.quantize_model model = quantize_model(model) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(train_data, train_labels, epochs=10) - In PyTorch:
- Apply QAT using PyTorch:
import torch from torch.quantization import quantize_qat, get_default_qat_qconfig model = MyModel() model.train() model.qconfig = get_default_qat_qconfig('fbgemm') torch.quantization.prepare_qat(model, inplace=True) # Train the model for epoch in range(num_epochs): # Perform training pass model = torch.quantization.convert(model)
- Benchmark and Evaluate
- Compare training speed, memory usage, and model accuracy for mixed precision and QAT models vs full precision models.
- Use benchmarking tools like NVIDIA’s Nsight or PyTorch’s built-in performance utilities to evaluate improvements.
- Document findings and analyze trade-offs in model efficiency vs accuracy.